Energy stable discontinuous Galerkin methods for Maxwell's equations in nonlinear optical media
نویسندگان
چکیده
The propagation of electromagnetic waves in general media is modeled by the time-dependent Maxwell’s partial differential equations (PDEs), coupled with constitutive laws that describe the response of the media. In this work, we focus on nonlinear optical media whose response is modeled by a system of first order nonlinear ordinary differential equations (ODEs), which include a single resonance linear Lorentz dispersion, and the nonlinearity comes from the instantaneous electronic Kerr response and the residual Raman molecular vibrational response. To design efficient, accurate, and stable computational methods, we apply high order discontinuous Galerkin discretizations in space to the hybrid PDE-ODE Maxwell system with several choices of numerical fluxes, and the resulting semi-discrete methods are shown to be energy stable. Under some restrictions on the strength of the nonlinearity, error estimates are also established. When we turn to fully discrete methods, the challenge to achieve provable stability lies in the temporal discretizations of the nonlinear terms. To overcome this, novel strategies are proposed to treat the nonlinearity in our model within the framework of the second-order leap-frog and implicit trapezoidal time integrators. The performance of the overall algorithms are demonstrated through numerical simulations of kink and antikink waves, and third-harmonic generation in soliton propagation.
منابع مشابه
Implicit Runge-Kutta Methods and Discontinuous Galerkin Discretizations for Linear Maxwell's Equations
In this paper we consider implicit Runge–Kutta methods for the time-integration of linear Maxwell’s equations. We first present error bounds for the abstract Cauchy problem which respect the unboundedness of the differential operators using energy techniques. The error bounds hold for algebraically stable and coercive methods such as Gauß and Radau collocation methods. The results for the abstr...
متن کاملA Discontinuous Galerkin Method for the Time-Domain Solution of 3D Maxwell's Equations on Non-Conforming Locally Refined Grids
A discontinuous Galerkin method is proposed for the numerical solution of the three-dimensional time-domain Maxwell's equations. A leap frog scheme is used for advancing in time. The scheme resulting can handle highly heterogeneous material, non diffusive and highly adaptable (it has been implemented on tetrahedral or hexahedral grids, including non-conforming). In some cases, some divergence c...
متن کاملOptimized Schwarz method for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method
متن کامل
Local discontinuous Galerkin methods for nonlinear dispersive equations
We develop local discontinuous Galerkin (DG) methods for solving nonlinear dispersive partial differential equations that have compactly supported traveling waves solutions, the so-called ‘‘compactons’’. The schemes we present extend the previous works of Yan and Shu on approximating solutions for linear dispersive equations and for certain KdV-type equations. We present two classes of DG metho...
متن کاملFinal Report of NASA Langley Grant NCC1-01035 Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows
methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 350 شماره
صفحات -
تاریخ انتشار 2017